Adaptive division of labor particle swarm optimization

نویسندگان

  • Wei Hong Lim
  • Nor Ashidi Mat Isa
چکیده

Although evident progress and considerable achievements have been attained in developing a new particle swarm optimization (PSO) algorithm, successfully balancing the exploration and exploitation capabilities of PSO to determine high-quality solutions for complex optimization problems remains a fundamental challenge. In this study, we propose a new PSO variant, namely, adaptive division of labor (ADOL) PSO (ADOLPSO), to overcome the demerits of our previous work. Specifically, an ADOL module is developed in ADOLPSO to adaptively regulate the exploration and exploitation searches of swarm. To achieve this purpose, both criteria of swarm diversity and fitness are considered during the task allocation process of the ADOLPSO current swarm. Two new operators, namely, convex operator and reflectance operator, are adopted to generate new particles from the memory swarm of ADOLPSO to further enhance the searching accuracy and convergence speed of the proposed algorithm. These two operators are activated to evolve the memory swarm only if a fitness improvement is observed in the current swarm of ADOLPSO to prevent excessive computational complexity. The proposed ADOLPSO is applied to solve 18 benchmark functions with various characteristics. Simulation results of ADOLPSO are compared with those of other nine well-established PSO variants. Experimental findings reveal that ADOLPSO significantly outperforms the other PSO variants in terms of searching accuracy, reliability, and convergence speed. 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive particularly tunable fuzzy particle swarm optimization algorithm

Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that owes much of its allure to its simplicity and its high effectiveness in solving sophisticated optimization problems. However, since the performance of the standard PSO is prone to being trapped in local extrema, abundant variants of PSO have been proposed by far. For instance, Fuzzy Adaptive PSO (FAPSO) algorithms ...

متن کامل

Solving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization

Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...

متن کامل

An adaptive two-layer particle swarm optimization with elitist learning strategy

This study presents an adaptive two-layer particle swarm optimization algorithm with elitist learning strategy (ATLPSO-ELS), which has better search capability than classical particle swarm optimization. In ATLPSO-ELS, we perform evolution on both the current swarm and the memory swarm, motivated by the tendency of the latter swarm to distribute around the problem’s optima. To achieve better co...

متن کامل

Division of Labor in Particle Swarm Optimisation

We introduce Division of Labor (DoL) from social insects to improve local optimisation of the Particle Swarm Optimiser (PSO). We compared the performance with the basic PSO, a GA and simulated annealing and found improvements around local optima. The PSO with DoL outperforms the basic PSO on most testcases and is comparable in local op-

متن کامل

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015